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Purpose. We applied in silico methods to automatically classify drugs according to the Biopharmaceutics

Drug Disposition Classification System (BDDCS).

Materials and Methods. Models were developed using machine learning methods including recursive

partitioning (RP), random forest (RF) and support vector machine (SVM) algorithms with ChemDraw,

clogP, polar surface area, VolSurf and MolConnZ descriptors. The dataset consisted of 165 training and

56 test set molecules.

Results. RF model 3, RP model 1, and SVM model 1 can correctly predict 73.1, 63.6 and 78.6% test

compounds in classes 1, 2 and 3, respectively. Both RP and SVM models can be used for class 4

prediction. The inclusion of consensus analysis resulted in improved test set predictions for class 2 and 4

drugs.

Conclusions. The models can be used to predict BDDCS class for new compounds from molecular

structure using readily available molecular descriptors and software, representing an area where in silico

approaches could aid the pharmaceutical industry in speeding drugs to the patient and reducing costs.

This could have significant applications in drug discovery to identify molecules that may have future

developability issues.

KEY WORDS: BCS; BDDCS; random forest; recursive partitioning; support vector machine.

INTRODUCTION

Efforts to improve the speed of bringing new drugs to
patients are sorely needed, as highlighted by the FDA_s Critical
Path Initiative. For example, since its introduction in 1995, the
Biopharmaceutics Classification System (BCS) has had a
significant impact on the drug regulatory process and practice.
For an immediate release orally active dosage form, the rate
and extent of its absorption is determined by its aqueous
solubility and permeability in the gastrointestinal tract. The
BCS therefore represents a new robust model for bioequiva-
lence studies based on physiological parameters and physico-
chemical properties of drug molecules. The BCS as adopted by
the World Health Organization (WHO), classifies the drug
molecules listed on the essential medicines list (EML) based on
their solubility and permeability characteristics into four

different classes (Fig. 1). Accordingly, certain drug classes can
be considered for a biowaiver, i.e. approval of products based
on their in vitro drug dissolution tests instead of their human
bioequivalence data, a costly task for drug manufacturers.
Such waivers significantly improve the speed and decrease the
cost of bringing orally administered therapeutics to market.
Currently, the BCS system allows a waiver of in vivo
bioequivalence testing of immediate-release solid dosage
forms for class 1 drugs (1). Whereas waivers for class 3 drugs
are recommended only based on scientific justifications (2,3).

Drug classification according to BCS requires knowl-
edge of solubility and permeability data. The determination
of drug permeability is typically based on experimental
permeability data or well-defined mass balance studies. This
information is available only for a small fraction of EML
listed drugs (4). A biowaiver currently can be requested for
orally active immediate-release dosage forms (Q85% release
in 30 min), containing drugs with high solubility over the pH
range 1 to 7.5 (dose/solubility ratio <250 ml) and a high
permeability (fraction absorbed Q90%), provided excipients
used in the formulation do not interfere with the drug
absorption process. Drugs with narrow therapeutic range
and drugs designed to be absorbed from the oral cavity may
not be considered for biowaivers (5). Thus, the central idea of
the BCS classification system is to predict in vivo pharmaco-
kinetic performance of drug products from in vitro drug
solubility and permeability characteristics (6).
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More recently, Wu and Benet (6) extensively examined
about 167 BCS classified drugs. They aptly noticed that
pharmacokinetic considerations like effects of food, absorp-
tive transporters, efflux transporters, and routes of elimina-
tion (renal/biliary) were important determinants of overall
drug absorption and bioavailability for immediate release
oral dosage forms. Thus, they suggested that classifying
molecules based on the extent of metabolism is less
ambiguous as compared to permeability or extent of absorp-
tion. This classification may also increase the number of class
1 drugs that would become eligible for biowaivers (7). The
BDDCS, like BCS, proposes to classify drug molecules into
four classes (Fig. 1), defining the extensive metabolism
criterion as Q50% (T10%) metabolism of an oral dose in

vivo in humans. Based on this criterion, a few drugs that were
previously BCS class 1 were reclassified as BDDCS class 3
and thus would not be eligible for biowaivers. A study by
Takagi et al. (7) observed at least eight drugs in the BDDCS
class 1 were eligible for biowaivers. Considering its overall
significance, the BDDCS approach could be helpful in
successfully classifying drugs in class 1, thereby increasing
their eligibility for biowaivers.

A challenge for both BCS and BDDCS is the actual
classification of drugs based on the required in vitro

data for metabolism, solubility or permeability. However,
there has been considerable research over the last decade
on computational or in silico methods for prediction
of absorption, distribution, metabolism and excretion
(ADME) (8,9). The objective of the present study was to
enable simple and fast BDDCS classification by developing
computational classification models predicting BDDCS
class from molecular properties. Computational models
were developed based on data for 165 drugs as a training
set based on BDDCS data (6). To further test and challenge
our models, we have retrieved an additional 56 drugs listed
in the WHO EML that were not previously classified under
BDDCS but with ample literature data available to enable
classification.

MATERIALS AND METHODS

Drug List

A training set of 165 drugs for computational model
building was obtained from the published literature (6). An
additional set of 56 drugs, that were not included in the
original BDDCS, were retrieved from the WHO EML
publication and were used to challenge the computational
models (6,10). This collection was subsequently employed as
a test set upon classification according to BDDCS criteria.
Classification was established based on an extensive litera-
ture survey of drug disposition data as well as individual
physicochemical parameters described below.

Solubility Definition. Drug solubility data for classifica-
tion purposes was obtained from standard references (11–13)
and expressed in mg/ml. Where solubility data were not
available or undefined, guidelines were taken from Kasim et
al. (4). Maximum dose strength data was obtained from
WHO Essential Medicines core list and expressed in milli-
grams (10).

Dose Number calculations. The dose number (D0) was
calculated using (14):

D0 ¼
M0=V0ð Þ

Cs
ð1Þ

Where M0 is highest dose strength (mg), Cs is the solubility
(mg/ml) and V0 is 250 ml.

BDDCS Classification of Compounds

Drug disposition data (Table I) for 56 previously
unclassified drugs was obtained from an extensive literature
search. Aqueous solubility for each therapeutic drug class
was obtained from the Merck Index (14th Edition) and other

Fig. 1. a The Biopharmaceutics Classification System (BCS) as defined by the FDA after Kasim et al. (4). b Biopharmaceutics Drug

Disposition Classification System (BDDCS) proposed by Wu and Benet where major route of elimination (metabolized vs unchanged) serves

as the permeability criteria.
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pertinent literature references (11). Pharmacokinetic data
such as plasma half-life, bioavailability, P-glycoprotein (P-gp)
affinity, Cytochrome P450 affinity and extent of metabolism
were obtained from the literature by MedLine searching
using a combination of descriptive keywords and Boolean
operators. Additionally, web sources such as DrugBank (15)
and http://www.drugs.com were used. Based on this collective
information, the drug molecules were assigned to a BDDCS
class.

Computational Modeling

Data Collection and Molecule Building

The current dataset comprises 221 drug molecules
collected from various literature sources. Molecules were
downloaded from PubChem (http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi) as 2D SMILES strings which were con-
verted to SDF format and imported into Chem3D Ultra
(CambridgeSoft, Cambridge, MA) to generate MOL2 files.
The molecules were subsequently energy minimized in
SYBYL v.7.1 (Tripos Associates, St. Louis, MO) using the
Tripos force field (16) and Gasteiger–Hückel charges with
distance-dependent dielectrics and the conjugate gradient
method with a convergence criterion of 0.001 kcal/mol.

Descriptor Calculations

The number of hydrogen bond donors and hydrogen
bond acceptor groups were calculated with ChemDraw Ultra
8.0 (CambridgeSoft, Cambridge, MA); clogP and polar
surface area (PSA) were calculated using Sybyl v.7.1. One
hundred VolSurf descriptors (17) were calculated from 3D
molecular fields using VolSurf 4.0 implemented in SYBYL.
Five different probes including water (OH2), carbonyl
oxygen atom (O), amphipathic (BOTH), carbonyl oxygen
atom (O::), and Sp2N with lone pair (N:=) probes were used
for descriptor calculation. Volsurf descriptors include
descriptors for size, shape, hydrophilic and hydrophobic
regions, interaction energy amongst other descriptors. A
total of 149 Molconn-Z descriptors (2D topological) were
generated (18), including k-molecular shape indices, topo-
logical state, shape, Wiener and Shannon indices.

Model Building and Validation

Recursive Partitioning (RP) calculations were per-
formed using the rpart module of the R package (19). RP
can be used to mine large data sets in order to uncover
hidden patterns within data and assign appropriate class. RP
attempts to determine the relationship between a set of
dependent (X) and independent variables (Y) using the
simple mathematical function, Y=f(X). The result of RP is a
Btree^ or Bdecision tree^ or Bgraph^. The data is divided
(partitioned) into nodes (branches), where data with similar
properties tend to occupy the same node. A tenfold cross-
validation study was performed on the training set.

The R program was also used for random forest (RF)
calculations (20). The total number of trees was set to 1000.
The other optimizable parameter in the random forest
approach is mtry, i.e. the number of descriptors (p) randomly

sampled as candidates for splitting at each node. When mtry

equals the number of descriptors (mtry=p) this is commonly
termed Bbagging.^ The number of descriptors was increased
systematically with an increment of 5. In general, the so-
called Bout of bag error^ (OBB) estimate can be considered
equivalent to a cross-validation study. In OBB, one third of
the compounds are randomly selected as a test set and a
model is developed from the remaining compounds. The
optimum mtry was chosen such that %OBB is minimum.
Thus, a lower %OBB indicates a higher accuracy of the
model.

The Kernlab package in R was used for generating
support vector machine (SVM) models. The scaling of the
training and test set descriptors avoided domination of any
descriptor with a large numerical value in the final SVM
model. The two optimizable parameters in the radial basis
function (RBF) kernel are C and sigma. The average value
obtained from the automated optimal sigma calculation
(sigest) method in R was used. The value of C was
determined using k-fold cross validation (k=10). The
corresponding value of C with the lowest cross-validation
error was then used for modeling. In k-fold cross validation
the entire dataset is divided into k subsets of almost equal
size. The model is trained using the kj1 subset and the
remaining subset is then used as prediction set. The
advantage of k-fold cross validation is that the entire dataset
is eventually used for both training and testing.

Six different models were generated for each method
utilizing different combinations of molecular descriptors. The
following descriptor combinations were used: model
1=ChemDraw (CD) and VolSurf (VS); model 2=CD, VS,
clogP and polar surface area (PSA); model 3=CD and
MolConnZ (MZ); model 4=CD, MZ, clogP and PSA; model
5=CD, VS and MZ; model 6=CD, VS, MZ, clogP and PSA.

Consensus Analysis

The consensus analysis for the test set was performed
using predicted data from all three computational modeling
methods. Three different rules, namely arithmetic mean, the
harmonic mean and the median were applied for the
generation of consensus classes. A total of 4 models were
generated using each rule. Model 1=best model from RP, RF
and SVM; model 2=best model from RP, and RF; model
3=best models from RP and SVM; model 4=best model from
RF and SVM.

Validation Metrics

Three metrics were considered in evaluating model
predictive performance. The three metrics are denoted
absolute accuracy, consumer_s accuracy, and producer_s
accuracy, with the latter two novel metrics attempting to
consider the viewpoints of the consumer and the producer of
the model. The percent accuracy is the percent of all drugs
correctly predicted. In applying percent accuracy to a
particular class, absolute accuracy is the percent of all drugs
in the class that are correctly predicted to be in that class.
Absolute accuracy carries no emphasis for avoiding one type
of error over another. However, in practice, it is well
appreciated that type I and type II errors represent different
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categories of inaccuracy. The selection of a final model for
each method was based on percent accuracy of the test set.
The percent accuracy for each class was calculated using:

Percent accuracy ¼ True Predictions

True Predictionsþ False Predictions

ð2Þ

Generally, a type I error can be described as a Bfalse positive^
error and a type II error as a Bfalse negative^ error. Further a
type I error occurs when a predicted class is biopharmaceuti-
cally more favorable than the true class and was denoted as a
Bconsumer risk.^ In order to reflect this perspective in a metric
to evaluate model predictive performance, the algorithm was
developed to denote Bconsumer_s accuracy^. In a type II error,
a predicted class is biopharmaceutically less favorable than the
true class; an error of this type can be denoted as a Bproducer
risk^. In order to reflect this perspective, Bproducer_s accu-
racy^ was devised.

RESULTS

BDDCS Classification of the BTest Set^

To validate and challenge the computational models
generated from the Wu and Benet data set, a collection of
56 drugs was retrieved from the WHO EML that had not
been listed previously under the original BDDCS list (1,6).
Drug disposition data was available for 56 drugs after an
extensive literature survey (Table I). Interestingly, the collec-
tion of 56 drugs extracted from WHO-EML contained 26
compounds that had been classified ambiguously (Table I,
column 11) by Lindenberg et al. (5) under BCS. Furthermore,
31 of the drugs in this collection were previously unclassified
(Table I, column 12) under BCS by Kasim et al. (4), while 4
drugs were classified ambiguously in this 2004 report. Due to
the relatively large number of compounds shared between our
test set collection and the compound list classified by Linden-
berg and colleagues, we used their BCS classification for
comparison against our present BDDCS classification (1,5).
Importantly, some of the drugs displayed a shift in BCS class to
a new BDDCS class. For example, doxycycline is classified as a
BCS class 1 drug, but its drug disposition data, featuring >50%
unchanged urinary clearance, and low aqueous solubility would
indicate class 4 under BDDCS. This classification is consistent
with observations made by Wu and Benet for BDDCS class 4
drugs, which are mainly eliminated, unchanged via biliary or
renal routes (6). Eight drugs, namely acetylsalicylic acid,
benznidazole, biperidine, methyldopa, nifurtimox, penicilla-
mine, penicillin V and thiamine, that were classified previously
as BCS class 3 drugs were reclassified as BDDCS class 1 drugs.
As an example, benznidazole has high aqueous solubility at the
dose administered, 96% bioavailability and extensive cyto-
chrome P450 metabolism, clearly justifying its classification
under BDDCS class 1 (21,22). Similar disposition charac-
teristics rationalize the reclassification of the other seven
therapeutics.

Glibenclamide, an oral antidiabetic drug with low
solubility (0.01 mg/ml) at the dose administered (5 mg) has

been categorized in BCS class 4. However, glibenclamide is a
confirmed substrate for both P-gp (23) and cytochrome P450
(24) and should thus be classified within BDDCS class 2. On
similar grounds, a BCS 4 to BDDCS 2 class shift can be
justified for mercaptopurine (25,26), retinol palmitate (27)
and sulfasalazine (28,29). Thus, after extensive literature
referencing the 56 test-set drugs from the BCS list were
reclassified according to the BDDCS guidelines. This classi-
fication was then used to test the computational models that
were built using 165 training set drugs obtained from the
original BDDCS list (6). The resulting class distribution data
for training and test set molecules (Table II) demonstrates
equal compound allocation across classes 1–3; however, the
percentage of molecules classified within class 4 in both data
sets is less than 10%. This low frequency distribution of class
4 compounds is likely to affect both model generation and
predictive confidence. Therefore, caution should be used in
the interpretation models of the ensuing models with regard
to class 4 compounds. The probability of randomly selecting
a training set class 1, 2, 3 or 4 drug is 36.4% (60/165), 30.9%
(51/165), 25.5% (42/165) and 7.3% (12/165), respectively. In
contrast, the random probability for selecting a test set class
1, 2, 3 or 4 drug is 46.5% (26/56), 19.6% (11/56), 25% (14/56)
and 8.9% (5/56), respectively.

Model Generation
Recursive Partitioning. To guide splitting criteria and opti-

mize decision tree induction a tenfold cross-validation was
performed on the training set data. A total of 6 descriptive
models were generated with similar average training class
accuracy (67, 70.1, 65.7, 66.1, 68.2, and 68.2% respectively). As
expected, prediction of class 4 molecules became the defining
criterion for a successful model (Tables III and IV). In fact, only
model 1, based on VolSurf descriptors and the number of
hydrogen bond donor and acceptor atoms per molecule, was
capable of designating appropriate node splitting criteria to
determine class 4 compounds. The best model can correctly
identify 66.7% (40/60) of the compounds in class 1, 94.1% (48/
51) of the compounds in class 2, 73.8% (31/42) of the
compounds in class 3, and 33.3% (4/12) of the compounds in
class 4 (Table V). However, the average performance (33.1%)
on the test set is unsatisfactory.

Nevertheless, some simple rules and criteria can be
obtained from the decision tree in Fig. 2. The descriptors
which are important for BDDCS classification are W1, W3,
HB1 and HB7 resulting from an sp2 hybridized nitrogen
probe containing one lone pair (N:=), W6 from an sp2

carboxyl oxygen atom probe (O::), and W3 and W6 from a
water probe (OH2). In general, W1 and W3 account for

Table II. Class Distribution of Drugs in Training and Test Sets

Class Training Set Test Set

1 60 (36.4) 26 (46.5)

2 51 (30.9) 11 (19.6)

3 42 (25.4) 14 (25)

4 12 (7.3) 5 (8.9)

The percentage of drugs in a particular class relative to the total

number of molecules in a set is shown in parentheses.
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polarizability and dispersion forces within a molecule,
whereas W6, HB1, and HB7 represent polar and hydrogen
bond donor and acceptor regions (recorded with different
probe atoms). HB1 and HB7 is calculated as the difference
between the hydrophilic volumes between water (OH2) and
the (N:=) probe.

Random Forest. Two metrics were used as a measure of
prediction accuracy for all models, namely the percent accuracy
for predicting external test set molecules and the out-of-bag
(OBB) estimate. Again, as in recursive partitioning, six random
forest models were developed and the best model (model 3,
based on ChemDraw and Molconn-Z descriptors) was selected
based on OBB error rate convergence. The overall OBB error
ranged from 35.1 to 42.4%. In general, the technique of
Bbagging^ (i.e. mtry=p) did not improve the predictive ability
of the models (as compared to models with mtry<p). Again,
predictive ability is poor for class 4 drugs as indicated by 25
and 0% accuracy for training and test set compounds,
respectively. However, prediction accuracy for test set mole-
cules in classes 1 and 3 is significantly better than those
obtained with recursive partitioning, exhibiting a 1.5 to
twofold increase over random selection.

Support Vector Machine. The level of training error
tolerated is controlled by the parameter C and models were
generated using C values of 0.1, 0.5, 1, and 10 up to 100 (with
10 point increments). The optimum value of C, 40, was
determined using k-fold cross-validation studies on the
training set data (k=10). Models 1, 5 and 6 were able to
correctly identify all the molecules in their respective classes
(100% accuracy); however, based on prediction accuracy on
the test set data, the performance of model 1 is superior to
that of models 5 and 6, largely due to problematic prediction
of class 4 compounds. Models 3–5 failed to predict class 4
compounds altogether in the test set (i.e. 0% accuracy),
whereas models 1, 2 and 6 displayed 20% prediction accuracy
(data not shown). Overall, the predictive performance of the
SVM models is significantly better compared to RP and RF
models (Table V). Despite its outstanding internal consisten-
cy, the test set prediction for class 1 is actually inferior
compared to the other methods, misclassifying 15 out of 26
compounds as class 3. On the other hand, only 3 out of 14
compounds in class 3 were erroneously predicted as class 1.
Intrinsic to its algorithm, support vector regression may
overfit data within the training set, thereby incurring a
performance penalty in predicting test set molecules.

To ascertain the distribution of molecules in descriptor
space, a principal component analysis (PCA) was performed on
descriptors from the best SVM model, i.e the model including
CD and VS descriptors. The PCA score plot provides an
estimate of the descriptor space of training and test molecules
(Fig. 3). The first three principal components of the training
and test set can explain 69.3 and 69.8% of the variance,
respectively. Test set molecules such as salbutamol, clomifene,
folic acid and cefaxime are outside the descriptor space of
training set molecules. Salbutamol, clomifene and folic acid are
class 3 drugs and are accurately predicted by the SVM model.
However, cefaxime is a class 4 drug predicted to be a class 3
compound by the SVM model. Consequently, PCA analysis
provides a convenient method for identifying outliers or
molecules that are far removed from the training set descriptor
field, thus providing lower confidence in their predictions.

Consensus Analysis of Models

RF, RP, and SVM models can correctly predict 73.1%
(19/26), 63.6% (7/11) and 78.6% (11/14) compounds in class

Table III. Type I and Type II Errors in Class Prediction

I
Predicted Class

I II III IV

True Class I accurate type II type II type II

II type I accurate metric-dependenta type II

III type I metric-dependenta accurate type II

IV type I type I type I accurate

a For class II drugs that are predicted to be class III and for class III drugs that are predicted to be class II, assignment of either type I or II error is not

obvious. Hence, assignment is selected to be metric-dependent, in order provide a conservative approach to the evaluation of model predictive

performance. For the consumer_s accuracy metric (Consumer0s accuracy ¼ percent accuracyþ 0 :5� %type II errorð Þ�0:5� %type I errorð Þ ),

this error will be designated a type I error. For producer_s accuracy (Producer0s accuracy ¼ percent accuracy� 0 :5� %type II errorð Þþ0:5�
%type I errorð Þ ), this error will be designated a type II error. For absolute accuracy, no designation is required.

Table IV. Confusion Matrix for Training and Test Set using

Different Machine Learning Methods

Class 1 Class 2 Class 3 Class 4

Recursive partitioning

Class 1 40 (9) 8 (8) 12 (9) 0 (0)

Class 2 2 (0) 48 (7) 0 (3) 1 (1)

Class 3 4 (5) 5 (4) 31 (2) 2 (3)

Class 4 3 (1) 0 (0) 5 (3) 4 (1)

Random forest

Class 1 36 (19) 13 (3) 11 (4) 0 (0)

Class 2 14 (5) 33 (5) 3 (1) 1 (0)

Class 3 12 (5) 5 (3) 23 (6) 2 (0)

Class 4 2 (1) 3 (2) 4 (2) 3 (0)

Support vector machine

Class 1 60 (5) 0 (5) 0 (15) 0 (1)

Class 2 0 (3) 51 (5) 0 (3) 0 (0)

Class 3 0 (3) 0 (0) 42 (11) 0 (0)

Class 4 0 (0) 0 (1) 0 (3) 12 (1)

The rows and columns represent actual and predicted class,

respectively. The values in the parentheses are for test set data
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1, class 2 and class 3 respectively. Both RP and SVM models
can be used for class 4 prediction however the accuracy is
poor possibly due to the limited number of molecules in the
training and test set. Along these lines we investigated
consensus modeling approaches where combinations of
different modeling methods are used (30). The consensus
model resulted in significant improvement for predicting
class 2 and 4 test set drugs. The prediction accuracy using
arithmetic mean model 1 and 3 for class 2 and 4 is 81.8 and
40% respectively (results not shown). However, consensus
modeling does not improve prediction accuracy across all
classes. The prediction accuracy for class 3 is generally worse
than for the individual models. However, the prediction
accuracy for class 2 and 4 drugs is higher than individual
models, provided a combination of consensus models is used.

Validation Metrics

The three metrics, absolute accuracy, consumer_s accu-
racy and producer_s accuracy denoted a model_s predictive
performance. Percent accuracy is the percent of all drugs
correctly predicted (Eq. 2). Absolute accuracy is the percent
of all drugs in the class that are correctly predicted to be in
that class. Table III identifies the occurrence of type I (false
positive error) and II (false negative error), depending on
true class. Consumer_s accuracy builds upon the absolute

accuracy, but further penalizes type I errors. Corresponding-
ly, consumer_s accuracy de-empasizes type II errors and
attenuates the impact of such errors to protect the interest of
the consumer. Analogous to consumer_s accuracy, producer_s
accuracy attempts to consider a particular viewpoint in
assessing model predictions. Consumer_s accuracy empha-
sizes avoidance of Bfalse positives,^ whereas producer_s
accuracy emphasizes avoidance of Bfalse negatives^. Each
matrix partially de-emphasizes the type of error that it is not
focused on. For any real dataset of predictions, consumer_s
accuracy and producer_s accuracy can be expected to differ,
since type I and type II error rates are generally different.
Consumer_s accuracy and producer_s accuracy will span
absolute accuracy, except in the case where type I and II
errors are identical, where all three metrics will be identical.
In general, a drug producer and consumer may have differing
needs for accuracy in the prediction of BDDCS classifica-
tions. The best SVM model in the present study illustrates
that consumer_s accuracy for the test set is lower than its
corresponding producer_s accuracy (Table VI), thereby
leading to a higher risk of misclassification for the consumer.

DISCUSSION

The BCS has been a helpful guide to classify compounds
based on their aqueous solubility and gastrointestinal perme-

W1.N.. < 1671

W6.OH2 < 103.8 W3.OH2 < 1050

W6.OH2 < 103.8 Class 3 Class 2 Class 4

H1.N.. >= -15.06 HB7.N..>= 15.31

W3.OH2 < 651.6 W3.N..< 278.1 Class 2 Class 3

Class 1 Class 2 Class 2 Class 3

W1.N.. < 1671

W6.OH2 < 103.8 W3.OH2 < 1050

W6.OH2 < 103.8 Class 3 Class 2 Class 4

H1.N.. >= -15.06 HB7.N..>= 15.31

W3.OH2 < 651.6 W3.N..< 278.1 Class 2 Class 3

Class 1 Class 2 Class 2 Class 3

Fig. 2. Recursive Partitioning tree for model 1. W1.N., W3.N., HB1.N. and HB7.N. are descriptors arising from sp2 nitrogen with one lone

pair probe; W6.O. from sp2 carboxy oxygen atom probe, W3.OH2 and W6.OH2 from water probe.

Table V. Percent Accuracy of Training and Test Set Molecules

Model Class 1 Class 2 Class 3 Class 4 All class

RP 66.7 (34.6) 94.1 (63.6) 73.8 (14.3) 33.3 (20) 75.5 (33.9)

RF 60 (73.1) 64.7 (45.5) 54.8 (42.9) 25 (0) 57.6 (53.6)

SVM 100 (19.2) 100 (45.5) 100 (78.6) 100 (20) 100 (39.3)

Random selection 36.4 (46.5) 30.9 (19.6) 25.5 (25) 7.3 (8.9) –

The percent accuracy of test set is shown in parentheses.
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ability (31). Wu and Benet (6) emphasize that the clinical
impact of efflux transporters in modulating oral absorption
and drug pharmacokinetics is most applicable to class 2, and
possibly class 4 compounds. For example, high permeability
allows facile cellular penetration for class 2 compounds, but
low solubility (perhaps mainly due to high lipophilicity) will
limit the effective concentration entering the cell, thereby
preventing saturation of efflux transporters. Consequently,
efflux transport can affect class 2 compounds_ extent of oral
bioavailability and their rate of absorption (6). Thus,
classification of compounds according to BDDCS guidelines
may allow for a scientific basis towards their observed clinical
behavior as a result of their interactions with P-gp and other
efflux transporters. This, in turn, allows for a deeper
understanding of their pharmacokinetic behavior and their
potential for drug–drug interactions. Identifying molecules
that interact with efflux transporters is important for drug
discovery but is also generally reliant on time consuming in
vitro and in vivo studies. However, computational models are
now available to assist in this process, as we have recently
shown for rapidly retrieving substrates or inhibitors for P-gp
from commercial databases with in vitro validation (32).

The goal of the current study was to (1) investigate
computational methods to produce predictive models; (2)
automatically and rapidly classify compounds into BDDCS
classes; and (3) use physicochemical properties derived from
molecular descriptors alone. In applying these algorithms one
can choose from a binary or a quaternary classification system
with hard or soft class assignments. A binary system would
independently assess the parameters solubility and metabolism
for each compound and either uniquely bin the compounds in
high/low categories (hard assignment) or use a gradated scale to
plot the parameters; class assignment in the latter case would be
determined by predefined criteria for low/high solubility and
poor/extensive metabolism. The present study chose to apply a
unified (quaternary) binning system with unambiguous (hard)
class assignment. To accomplish this, we used machine learning
methods as these algorithms have been widely used and
validated with large datasets and are exceptionally suited to
identify important properties and molecular descriptors from
diverse arrays of data. In this study, we have captured a range of
applicable descriptors for physicochemical properties, including
easily interpretable descriptors determined by widely available
chemical drawing software (e.g. ChemDraw) or web-based
tools (e.g. PubChem or ChemSpider), as well as complex
descriptor sets from commercial vendors such as MolconnZ
(18) and VolSurf (17).

Among the best models in the current study, SVM
model 1 revealed an exceptional level of training and test set
prediction accuracy. Interestingly, ChemDraw and VolSurf
descriptors are important for classifying class 2, 3 and 4 drugs,
whereas a combination of ChemDraw and MolconnZ
descriptors are useful for class 1 predictions. Thus, a
combination of 2D and 3D descriptors are important for
class 2, 3 and 4 drugs, whereas 2D descriptors alone are
relevant for class 1 predictions. These observations would
suggest that combinations of both models and descriptors
may be necessary for optimal prediction of the different
BDDCS classes.

Since this is the first report on predictive model
development for BDDCS, a direct comparison with previ-
ously established computational models is not possible;
however, we believe that a critical evaluation with respect
to earlier BCS models, especially the study by Bergström et

al. (33,34), is warranted. Although the overall prediction
accuracies of the training and tests sets between the
Bergström study and our models are comparable, there are
several important differences that should be highlighted: (1)

Table VI. Percent Consumer_s and Producer_s Accuracy of each of the Computational Models Used to Assign BDDCS Class

Model Class 1 Class 2 Class 3 Class 4

Consumer_s accuracy (%) of training and test set moleculesa

RP 83.3 (67.3) 93.1 (54.6) 65.5 (j7.1) 0 (j20)

RF 80 (86.5) 49.0 (18.2) 36.9 (14.3) j12.5 (j50)

SVM 100 (59.6) 100 (18.2) 100 (67.9) 100 (j20)

Producer_s accuracy (%) of training and test set moleculesb

RP 50 (1.9) 95.1 (45.5) 70.2 (7.2) 66.7 (60)

RF 40 (59.6) 74.5 (63.6) 60.7 (50) 62.5 (50)

SVM 100 (59.6) 100 (45.5) 100 (89.3) 100 (60)

a The consumer_s accuracy (%) of test set is shown in parentheses.
b The producer_s accuracy (%) of test set is shown in parentheses.
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the Bergström study encompasses a very small number of
compounds, presumably with limited chemical space; (2)
PTSA is a conformation-dependent property requiring a 3D
structure for calculations, thereby reducing the portability of
the models between independent laboratories; and (3) solu-
bility and permeability parameters are independently calcu-
lated. Interestingly, in the current study, models that included
PSA or cLogP as a descriptor generally underperformed
compared with models using alternative descriptors. This is
in marked contrast to the work by Bergström et al. (34), who
determined that PTSA could satisfy both drug solubility and
permeability for BCS calculations. In agreement with our
present data, however, they determined that cLogP could be
excluded as a descriptor without the model losing predictive
power. In fact, they found that the molecular surface areas
alone contained sufficient information regarding lipophilicity.
Analogous to this, it is likely that MolconnZ and VolSurf
descriptors alone sufficiently capture lipophilicity to render
cLogP redundant as a separate descriptor.

It is important to point out that most difficulty was
encountered in predicting class 4 compounds. This was not
entirely unexpected, since the number of training set
molecules for class 4 compounds is small compared to the
other classes. Inevitably, the models were trained primarily
for classes 1–3 even when weighting is applied, leading to a
disproportionate bias to predicting these classes. However,
this may not be a major concern for the pharmaceutical
industry because generally the number of compounds under
development in classes 3 or 4 is low; for example, fewer than
10% of current compounds in the drug discovery pipeline of
GlaxoSmithKline fall within BCS class 3 or 4 (35). Addition-
ally, the bias towards accurately predicting class 1 and 2
compounds can be viewed as favorable in that these drugs
may encounter fewer issues during the subsequent drug
development process.

Options for improving the confidence in the computa-
tional models include the application of a combination of
models. Additional computational methods such as k-Nearest
Neighbor (kNN), Kohonen and Sammon mapping could be
evaluated in the future alongside additional molecular
descriptors and an enlarged training and test set with more
examples of class 4 compounds. The utilization of Tanimoto
similarity, PCA or other graphical mapping tools to assess
the distance of a test set molecule from the training set will
also aid in improving the confidence in predictions. We also
foresee availability of these models to a global audience using
web-based applications or their integration into existing
database tools.

In summary, the present study represents a new devel-
opment for rapidly assigning drugs to BDDCS classifications,
providing useful additional insight into bioavailability aspects
of a drug. This could have significant application in the drug
discovery field to a priori identify molecules that may have
future developability issues.
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